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Abstract. The biaxially next-nearest-neighbour lsing ( B N N N I )  model is studied using the 
Monte Carlo procedure. The structure factor is used to identify the possible phases of the 
system. At intermediate temperatures, evidence for the presence of an additional incom- 
mensurate phase with a varying wavevector between the disordered and antiphase states 
is given. 

1. Introduction 

The biaxially next-nearest-neighbour Ising ( B N N N I )  model can be defined by the 
two-dimensional Hamiltonian: 

where the first summation is over all nearest-neighbour pairs and the second summation 
is over all axially next-nearest-neighbour pairs of Ising spins s, (with s, = T1). K ,  and 
K z  are the nearest and axially next-nearest couplings, respectively ( K  = J / k T  with J 
the magnetic interaction between neighbouring spins, k the Boltzmann constant and 
T the temperature). 

Early studies on the model were done by Hornreich et a1 (1979), Selke and Fisher 
(1980) and Selke (1981). Later the model was analysed by the series analysis method 
(Oitmaa and Velgakis 1987), finite lattice methods (Oitmaa et a1 1987) and Monte 
Carlo methods (Landau and Binder 1985, Velgakis and Oitmaa 1988). 

The model has one disordered (paramagnetic) and at least three ordered states (a  
ferromagnetic state, an antiphase state, in which the four spins in a two by two unit 
cell alternate in direction in neighbouring cells, and an antiferromagnetic state). In 
the work by Landau and Binder it was found that there is a single transition between 
disordered and antiphase states. In other works, no clear evidence is given about the 
type of the transition between these states. 

In the recent work by Aydin and Yalabik (1989), the phase diagram of the B N N N I  

model has been obtained using the renormalisation group ( RG) method. It is observed 
that there is a single transition between disordered and antiphase states at high 
temperatures and that there is evidence for an additional new phase between these 
phases at intermediate and low temperatures. The main features of this phase could 
not be determined since its ground state is not conserved by the RG transformation 
used in this study. 

In the present work, the B N N N I  model is studied using the Monte Carlo method. 
Evidence is presented for the existence of an incommensurately ordered phase (whose 
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presence in the B N N N I  model was conjectured earlier by Aydin and Yalabik, (1989)) 
as well as the regular antiphase, ferromagnetic and antiferromagnetic phases. 

The next section gives a description of the method used for the simulation and 
analysis. The results are summarised in the last section. 

2. Method and analysis 

In the present work, the B N N N I  model is studied using the Monte Carlo method. 
Starting from a random initial configuration or from an ordered ground state, the 
system is relaxed using the standard Monte Carlo procedure (Binder and Stauffer 
1984). Time is measured in Monte Carlo steps (MCS).  When the number of flipped 
spins is equal to the total number of spins (not necessarily each spin of the system is 
flipped), the system is said to relax for one MCS. Computations are carried out up  to 
10000 MCS on a 128 x 128 lattice. The structure factor, time variations of energy, 
nearest-, next-nearest, axially next-nearest-neighbour correlations and the magnetisa- 
tion are obtained for various sets of K ,  and K 2  values. The resulting phase diagram 
is given in figure 1. When K ,  = 0, the system decomposes into four independent 
two-dimensional Ising lattices with nearest-neighbour coupling K 2 .  The exact value 
for the critical coupling is K ,  = 0.44.. . , which is shown in the phase diagram (figure 
1( a ) )  for this case and for the case K ,  = 0 as well. (The latter case simply corresponds 
to the two-dimensional Ising model with a nearest-neighbour coupling K ,  .) 

The structure factor of the system is obtained using the relation 

S(i, j ) =  ( - SS(isI3) 

where Ss(i, j )  is given by the formula 
. N-Ar 

Here N 2  is the total number of spins in the system ( N  = 128). The function Fs( i, j )  
is calculated at various time intervals such as 10, 20, 100, 200, 500,. , . , MCS for various 
sets of K ,  and K 2  and it is averaged over the values obtained at these intervals. The 
factor Ns in equation (2) is the number of evaluations of the function FS(i, j ) .  The 
function Fs(i, j )  is obtained by taking the Fourier transform of the two-dimensional 
autocorrelation function, using a fast Fourier algorithm. The three-dimensional plots 
of S( i, j )  against i and  j are obtained for various sets of K ,  and K 2  values. These 
plots show clearly the phase of the system, if it is one of the phases, namely ferromag- 
netic, antiferromagnetic and antiphase states. When S(i, j )  is plotted along the (1, 1) 
direction (i.e. for i = j ) ,  it is possible to identify all phases clearly. (The system is 
symmetric around the axis along the (1, 1) direction.) The point i = j = I, where S( i, j )  
has a maximum gives the magnitude of the wavevector of the underlying phase. The 
components k, = k), = k,  of the corresponding wavevector can be calculated using the 
relation 

2 rlm 
k, =- 

N ’  (4) 

Figure 2 displays the structure factor S(k,, k),) plotted along the (1, 1 )  direction as a 
function of k, = ky for certain values of the coupling constants. The structure factor 
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Figure 1. The  phase diagram obtained as  a result of this work. The points in ( a )  correspond 
to the coupling constant values used in the simulation. The  points identified by I ,  11, etc, 
in ( b )  are  referred to in figure 2. I N  represents the incommensurate,  F the ferromagnetic, 
P the paramagnetic,  and  A P  the antiphase states. The phase separation lines were drawn 
roughly, based on  the nature of the structure function at the simulation points. 

is calculated by averaging S(i, j )  over eight symmetric portions of the lattice as well. 
Two-dimensional plots, in the form of contours showing equal structure factor values, 
are obtained for each set of K ,  and K 2  values at which Monte Carlo simulation is 
carried out. Although two different type of plots give the same results, the value of 
k,  can be obtained more easily and more precisely using S(k,y = k y )  plots. In figure 
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2 ( a ) ,  the structure factor has a maximum at k ,  = k,. = 0. This indicates that this set of 
K 1  and K 2  values ( K ,  =0.60, K 2  = -0.20) corresponds to a point which is in the 
ferromagnetic phase of the phase diagram given in figure l ( a ) .  For some values of 
K 1  and K2, no distinctive peaks are noticeable in the structure function. It displays 
a random behaviour. Figure 2( b )  is a typical plot of this kind which characterises the 
disordered phase. In figures 2( c ) - ( f ) ,  k ,  varies between 7r/3 and ~ / 2 .  The structure 
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factor has a maximum at k, = ~ / 2  in figure 2( f) ( K ,  = 0.60, K ,  = 0.66). This is an  
indication of the antiphase state. 

In  the phase diagram (figures l ( a ) ,  l ( b ) ) ,  the region shown by I N  corresponds to 
a special type of phase in which k, varies as K, is varied for a fixed value of K , .  It 
occurs at a lower value than k, = 7r/2 when K 2  is increased (for a fixed value of K , )  
starting from the boundary of the antiphase state. The variation of a wavevector is an  
indication of an  incommensurate phase between disordered and antiphase states. 
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Figure 3. Relaxation of the system energy as a function of time for two points in the I N  

phase. The letters next to the plots represent different types of starting configurations (R 
represents a random configuration). ( a )  K, = 0.55, K, = -0.55. ( b )  K ,  = 0.55, K, = -0.50. 
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Because of insufficient data, it is not possible to predict the value of k,  at a point near 
the incommensurate-disordered phase boundary. For larger values of K 2 ,  the structure 
function does not have a single distinctive peak at a non-zero k, value. The structure 
factor with a random behaviour characterises the disordered phase, and  the phase for 
which the structure factor has a peak at k, = k, = O  is the ferromagnetic phase, as 
mentioned above. 

For small values of K ,  ( K ,  <0.15), no peak other than the one at k, = x / 2  is 
observed in the structure function, when the value of K 2  is varied. This is an  indication 
of a direct transition between disordered and  antiphase states. Figure 1 ( a )  shows the 
set of values at which the Monte Carlo calculations are carried out. The phase 
boundaries are drawn roughly using the structure factor data. Figure l ( b )  is the more 
convenient form of figure l ( a ) .  Not all data points in figure l ( a )  are shown in figure 
l ( b ) ;  only the set of K ,  and K 2  values included in figure 2 are shown. 

The energy against time data in figure 3 shows that equilibrium can be reached in 
all regions of the phase diagram. In the antiphase state and  in region I N  (at points 
close to the antiphase state), the system stays locked into the initial state if the starting 
configuration is one of the antiphase ground states. However, it is possible to reach 
equilibrium by starting from a random configuration or  from another ordered ground 

I O 1  

Figure 4. A configuration of the system in the I N  phase. In ( a ) ,  each letter represents one 
of the sixteen degenerate ground states of the AP phase. In ( b ) ,  domains corresponding 
to a particular type of ground state are shaded to demonstrate their periodic nature. 
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state. Figure 3 ( a )  shows the time variation of energy at a point ( K ,  = 0.55, K 2  = -0.55) 
near the boundary between region I N  and the antiphase state. It is obvious from this 
figure that one can reach equilibrium by starting either from a random configuration 
or from the ferromagnetic ground state. The time variation for a point in region IN is 
given in figure 3 (  b ) .  For this particular set of values ( K ,  = 0.55, K 2  = -0.50), equilibrium 
can be reached by starting from the antiphase ground state as well. 

Figure 4( a )  shows a lattice configuration for the set of values K1 = 0.55, K2 = -0.55. 
Each letter denotes one of the sixteen degenerate ground states of the antiphase state. 
In figure 4(b), the presence of one particular ground state is indicated by the shaded 
regions. Unlike the other ordered phases, the boundaries between these ground states 
have a tendency to lie along the (1 , l )  direction. The same character is observed when 
the procedure is repeated with different random initial configurations. The main shapes 
and features, such as the periods of repetition corresponding to domains of different 
ground states (whose corresponding peaks could be identified on the structure func- 
tion), do not seem to change as the number of MCS is increased. This is further evidence 
for the appearence of the incommensurate phase in region I N  of the phase diagram. 

By repeating this procedure for a large number of coupling constant values (e.g. 
with small increments in K2 for fixed values of Kl),  a detailed phase diagram can be 
obtained. The types of transitions can be deduced by analysing the variations of 

( b )  

Figure 4. (continued) 
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correlation functions across these transitions. It is also necessary to see to what value 
k ,  approaches at points near the disordered-antiphase phase boundary. A larger 
number of MCS would probably be required near the critical points due to the slowing 
down effects. 

3. Results 

In the present work, the B N N N I  model is analysed at various values of its coupling 
constants using the Monte Carlo simulation on a 128 x 128 lattice. The time variations 
of energy, nearest-, next-nearest-, axially-next-nearest-neighbour correlations and the 
magnetisation are obtained. The time variation of energy is used to check the equili- 
brium conditions. 

The structure function values are obtained using Fourier transforms of the spin 
variables of the system (equation (2)) and  plotted along the (1, 1) direction. Some 
typical plots are shown in figure 2. These plots are used to identify the type of 
undergoing phase and  to find the magnitude of the wavevector of that phase. The 
components k,, k, ( k ,  = k , )  of the wavevector corresponds to the k,  value along the 
horizontal axis at which the structure function has a maximum. The antiphase state 
is characterised by a wavevector with components k, = k, = k,  = 7r/2 along the (1 , l )  
direction. Starting from the boundary of the antiphase state, k ,  has lower values as 
K 2  is increased. For some values of K z ,  S ( k , ,  k , )  does not have a single distinctive 
peak, but a randomly varying character and  it can be recognised as the disordered 
phase. The only phase appearing after this phase (when K 2  is increased) is the 
ferromagnetic phase which has a single peak at k, = k,  = k,  = 0. 

The phase diagram is drawn roughly through the data points at which the Monte 
Carlo calculations are carried out. The structure factor data show that the phases with 
constant k ,  value are the ferromagnetic, antiferromagnetic and antiphase states (with 
k ,  = 0, k ,  = 7~ and k ,  = ~ / 2 ,  respectively). The variation of the wavevector between 
disordered and  antiphase states at intermediate temperatures is an indication of an  
incommensurate phase between these phases. No peak other than the one with 
k,  = 7r/2 is observed at high temperatures (for K ,  <0.15), when K 2  is varied for a 
fixed value of K , .  This is the evidence of a single transition between antiphase and  
disordered states at these temperatures. 

The main result of this work is the evidence presented for the existence of a phase 
with a varying wavevector at intermediate temperatures. The resulting phase diagram 
is not a detailed phase diagram obtained at sufficiently large numbers of data points. 
It only shows the main shape of the phase diagram and possible phases of the system. 
The structure factor is the quantity used to identify the possible phases of the system 
and to find the magnitudes of their corresponding wavevectors as well. The main 
character of the incommensurate phase can be observed by looking at spin values of 
the system which is sufficiently far away from equilibrium (figure 4). Degenerate 
ground states of this phase seem to have boundaries lying along the (1, 1) direction 
of the system. 

Equilibrium can be reached in all regions of the phase diagram using a random 
initial configuration or ground state of an ordered state. 10 000 MCS seem sufficiently 
large to study the equilibrium behaviour of the system. The Monte Carlo method is 
expected to give better results as the lattice size is increased. However, this size 
(128 x 128) seems to be sufficiently large to obtain the phase diagram accurately. The 
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finite-size effects, which are not considered in this study, would be an  interesting 
problem to explore using this method. 

The statistical errors in this study are very small since large numbers of MCS are 
carried out for each data point in the phase diagram. (They are very small compared 
to the size of the data points.) The errors arise due to the lack of a sufficient number 
of data values (i.e. they depend on the increment of K 2  values for a fixed value of K ,  
and also on the increment of Ki). The same reason holds for our not being able to 
give the value of k,  at points near the incommensurate-disordered phase boundary 
and  for not being able to give any specific information about the type of transition. 

By repeating this procedure for large numbers of K i  values, with much smaller 
increments in K 2  values, the type of transition along the disordered-antiphase state 
phase boundary can be found from the energy against K ,  variation. It can also provide 
the magnitude of the wavevector in the incommensurate phase near the disordered 
phase boundary (which is expected to have the smallest value in this phase). 
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